

Understanding mechanisms to predict and optimize biochar for sorption of agrichemicals

Kathleen E. Hall, Lucia Cox, Beatriz Gamiz, Kurt A. Spokas

Biochar as a sorbent

Biochar – pesticide interactions have been widely studied.

Applications

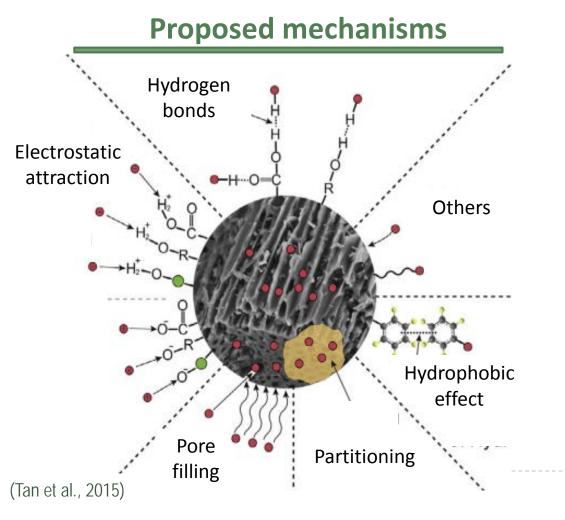
Filter material

Water treatment

Soil remediation

Important to understand these interactions, whether intentional or side effect of alternative applications

Biochar diversity


- Available feedstocks and pyrolysis systems
- Differing sorption results limit predictability among biochars

- Limited understanding of the mechanisms driving biochar-pesticide interactions
- ► There is a need to systematically study chemistry of biochars → greater understanding and optimization

Biochar-pesticide interactions

Sorption depends on both biochar and chemical properties

- Influenced by biochar surface characteristics
 - Chemical
 - Surface groups
 - Physical

Surface area

Pore size distribution

 Both can be modified (activation)

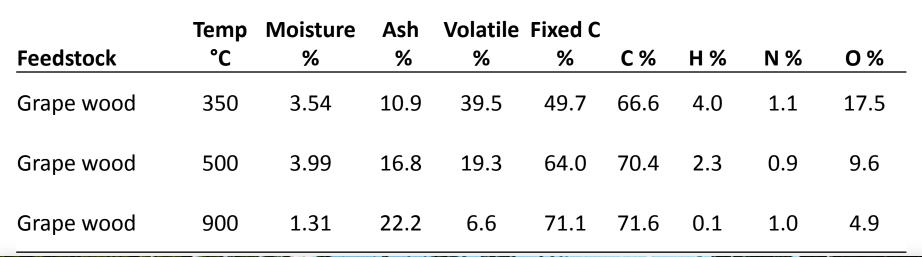
Biochar activation

Different techniques include

- Heating
- Solvent washing
 - HCI
- Surface oxidation/reduction
 - Steam
 - H_2O_2
 - CO₂
 - H_2SO_4, HNO_3, H_3PO_4

Goals are to increase sorption by increasing SSA and strategically altering functionality

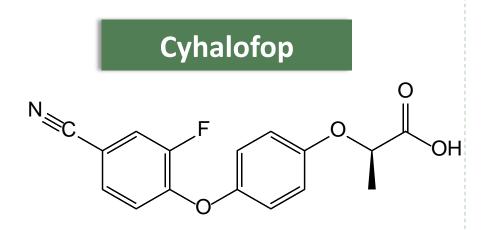
Objectives

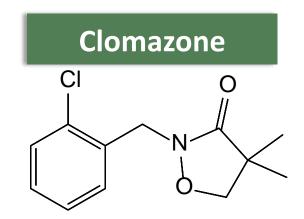

Activate biochars by a variety of methods to create "normalized" sorbent materials

Evaluate the role of biochar surface characteristics on the sorption of select herbicides with different chemistries

Materials - Biochars

Feedstock = Grape wood




Materials - Biochars

Activations H_2O_2 **CO**₂ ► HCI H_2SO_4 H_3PO_4 ► HNO₃

Materials - Pesticides

- post-emergence control of grass weeds in rice crops
- weak acid, pKa = 3.9
- Soil Koc = 186

- control of broad-leaved weeds and grasses in a range of crops
- nonionizable (no dissociation)
- Soil Koc = 300

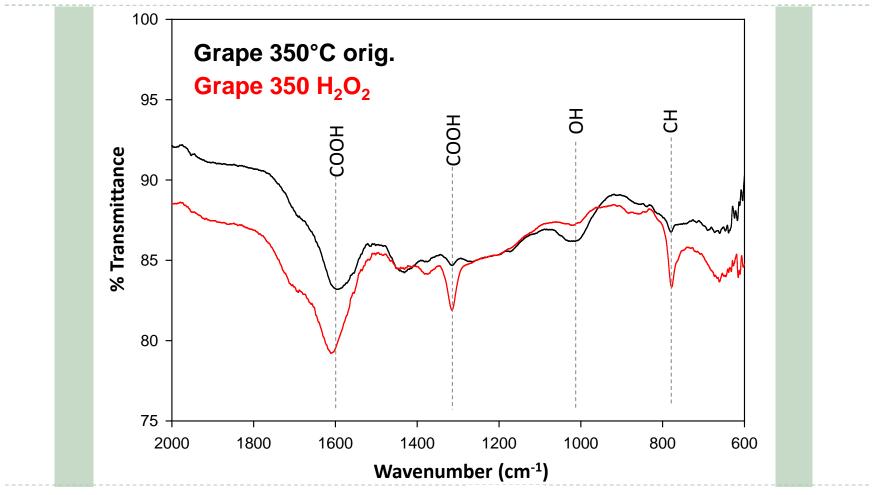
Methods

Biochar characterization

- ATR FTIR pН
- Surface area
- Zeta potential > % moisture

Sorption characterization

- Batch equilibration method
- **HPLC** analysis
- % sorbed


Results – Pesticide sorption

	Cyhalofo	Cyhalofop (H ₂ O)		Clomazone (H ₂ O)	
Biochar	% sorbed ^a	рН	% sorbed ^a	рН	
Grape 350	6.3	7.9	65.0	7.9	
Grape 500	11.0	9.8	47.5	9.7	
Grape 900	99.1	11.6	99.7	11.6	

^a average CV = 0.1

- Greater sorption of clomazone on all biochars
- Lower clomazone sorption at 500°C than 350°C

Results – H_2O_2 activation

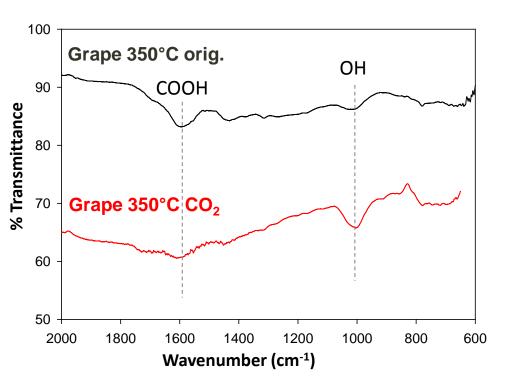
Visible changes in surface chemistry with activation

Results – Pesticide sorption

	Cyhalofop (H ₂ O)		Clomazone (H ₂ O)	
Biochar	% sorbed ^a	рН	% sorbed ^a	рН
Grape 350	6.3	7.9	65.0	7.9
Grape 350 H_2O_2	35.4	4.8	70.3	4.8

^a average CV = 0.1

- Increase with activation more pronounced for cyhalofop
- Greater fraction of cyhalofop in molecular form at low pH
- This emphasizes the influence of pH for weak acid pesticides compared to nonionizable compounds
- PH could be due to added functional groups or alternative alterations

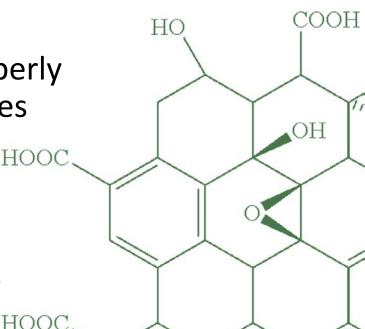

Results – Pesticide sorption

	Cyhalofop (H ₂ O)		Cyhalofop (0.01 M CaCl ₂)	
Biochar	% sorbed ^a	рН	% sorbed ^a	рН
Grape 350	6.3	7.9	19.5	7.5
Grape 350 H_2O_2	35.4	4.8	55.2	4.5

^a average CV = 0.1

- Higher sorption in CaCl₂
- Sorption increased 6 x and 3 x with activation in H₂O and CaCl₂, respectively
- ▶ 3 unit pH decrease in both H₂O and CaCl₂ with activation

Results – CO₂ activation



C	yhalofop (0.1	M CaCl ₂)
Biochar	% sorbed	рН
Grape 350	19.5	7.5
Grape 350 CO ₂	13.1	7.2

- CO₂ activation decreased cyhalofop sorption
- Lost carboxyl groups correspond to decreased sorption
- Supports role of carboxylic group being important to sorption

Conclusions

- Activation can customize biochars for desired sorption properties
- Biochar activation is a useful tool in studying binding mechanisms of organic contaminants
- This information can be used to properly select biochars for intended purposes and environments

Acknowledgements

- University of Minnesota Thesis Research Travel Grant
- Dr. Jeffrey "the pope" Novak, ARS- Florence, SC biochar production
- Kurt Spokas hand model in video (available for booking)