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Presentation Objectives

Energy Production Microalgae Biosystem
— Impact of temporal ‘ AE
resolution on LCA

Impact of co-product
pricing on economics

‘—--------------_N

@ COLORADO STATE UNIVERSITY Jason.Quinn@colostate.edu



Economic Methodology

Simple Economics Modeling Discounted Cash Flow Rate of Return

|
Y. Capital

Annulized Capital = T Internal Rate of Return (IRR) 10%
lLje

Plant financing debt/equity 60%/40% of total capital investment
; ; ; Plant life 30 years
Biomass Cost = Annultz?d Capital :Anual Oz?eratlonal
yield yield Income tax rate 35%
Interest rate for debt financing 8% annually
Term for debt financing 10 years
— Working capital cost 5% of fixed capital)
% Depreciation schedule 7-years MACRES schedule
)
B
° 30 year clash flow 5
incorporating time value of %
1 5 9 13 17 21 25 29 money. Modeling work %
Year of Operation . . . O
determines biomass selling
mcapital moperational . .
price to achieve a NPV of zero
30 year clash flow based on the MARINER at 30 years. B ————
economic methodology Year of Operation

M Capital Cost M Operational Cost M Loan Payment M Taxes M Annual Revenue
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Economic Methodology

Simple Economics Modeling Iscounted Cash Flow Rate of Return
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3 . $160 - _
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O $100 A Total Cap-ex -
o ] 2 5100 1 W Taxes
= 400: H ting O g
z a0 ] : Harvesting Op-ex = Total Cap-ex
O ] $19.67 S 80 1
E : 300: Drift Op-ex CZJ $31.04 400: Harvesting Op-
s $60 = ex
- U .
e ] _ .  $60 - 300: Drift Op-ex
- $21.66 200: Seeding Op-ex = $6.73
b ] E 200: Seeding Op-ex
$40 - $4.69 100: Nursery Op-ex Y ¢40 | . 5
n $39.20 : Nursery Op-ex
T 27.35
$9.46 ' $13.55
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Presentation Objectives
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Global Warming

Life Cycle Assessment GHG Emissions
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Global Warming

GHG Emissions 100 Year Global Warming Potential
f100 GHG(t)dt
COZ q GWPGHG(]'OO)_floo RFCOZ (t)dt
Radiative forcing GW P, (100) =1 96‘20661
CH, . (W/m?) 7
GW Py, (100) =28 gCgH‘""
N,O —_—

N,O

GWPy,0(100) =265 -2
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Global Warming 1’

z GHG Emissions X GWPgggug = Total CO,eq

Coal Power Plant

1600 2049

g COzeq,
1400 — 30vears= 1120 g CO.eq per kWh
kW h, Y g 264 P

1200 t=2020
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400
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Global Warming 1’

o 2021 vs 2049 Coal Power Plant

1400
How do we compare impacts at different times?
1200
1000

800

600
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Including Temporal Resolution in LCA

Dynamic Analytical
greenhouse gas time horizon
concentrations O’Hare

Kendall
Levasseur
Farquharson
’ 7 )
O’Hare, M., et al. 2009 ' \ ANk
' ‘, Delucchi

Farquharson, D., et al. 2017 )
No single methodology

includes all of these

oy . . Comparison of
D5 considerations

38 economic damage
Kendall, A., et al. 2009 from emissions
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Soclal Costs of Greenhouse Gases

Social Cost of CO,

1 —
>100 Baseline SC-
= Year
S 480 L S of damage from 1 tdi¥of CO,
= 2020 $42
e $60 t 2025 %46
> Specifictyygar gf emission
g 540 - t 2035
T <0 | Discountlto present value
3 D045 $64

$0 2050 $69

2020 2025 2030 2035 2040 2045 2050

Low —Baseline —High
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Soclal Costs of Greenhouse Gases

g $3,500
L $3000
g $2,500
£ $2,000
§ $1,500
< $1,000
o

N S500

S_

Social Cost of CH, Social Cost of N,O
$40,000
$35,000

$30,000 /
$25,000
$20,000
$15,000

$10,000 |
§5,000 F

Social Cost (S/metric ton)

2020
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Method 1: New LCA Method

Social Cost gyg i

Dynamic Global Warming Impactgyg; = Social Cost co. 2020
2,

Dynamic Global Warming Impact (DGWI) Using Baseline Social Costs of Greenhouse Gases
Year of Emission CO, CH, N,O

2020 1.00 29 357

Sproul, E., et al., Time Value of Greenhouse Gas Ei};sions in Life Cycle Assessment and Techno-
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New LCA Method R 2
q

Prefotal00, = ) GHG Emissions X GWiPlyygug

2000 B Additional Temporal Impact
1800 B Standard Life Cycle Assessment
1600
1400
1200
1000
800
600
400
200

Coal Power Plant

g CO,-eq per kWh
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New LCA Method: Electrical Energy
Production

/ Range of future scenarios considered

2000 -~
3  High DGW|
= 1600 o 60 -
S = m Baseline DGWI
5 § Low DGWI
ow _
& X 1200 - 40
Q o W Standard LCA
a ¢
T N
@O 800 -
o o | Emom
v
5: CSP Nuclear Wind
400 -
l-----------------------------------l
0 - : |
Coal | Natural CoalCCS Natural | PV CSP  Nuclear ~ Wind !
Gas Gas CCS Lmmmmmm e 1

Sproul, E., et al., Time Value of Greenhouse Gas Erf?sions in Life Cycle Assessment and Techno-
Economic Analysis. Environmentat Science & Technology 53, 6073—6080 (2019).
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Biochar Implications: Biofuel Case Study

. : Biomass Harvest and . Transportation and
Biomass Production Conversion e
Transport Distribution

% 1000 -
S 500 A Biogas
2
S 0 -
-1000 -
°c3IRATOeR®gaI A * Timing of carbon flows is dynamic
o

* Carbon in the biochar is “sequestered”
* Carbon in biogas and fuels is released upon use
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Presentation Objectives
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Introduction: Conversion Systems

Hydrothermal

Liguefaction (HTL) Fractionation

Lipid Extraction

Algae Biomass Algae Biomass Algae Biomass
Proteins Lipids Carbs. Proteins Lipids Carbs. Proteins Lipids

300-350°C, 20 MPa

Animal feed or
AD / CHP

Fuel Fuel Fuels & other products

Biochar
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Techno-economic Methodology

Discounted Cash Flow Rate of Return

Internal Rate of Return (IRR) 10%
Plant financing debt/equity 60%/40% of total capital investment
Plant life 30 years g
Income tax rate 35% E
Interest rate for debt financing 8% annually “‘;
Term for debt financing 10 years o
[
Working capital cost 5% of fixed capital) N
vy
Depreciation schedule 7-years MACRES schedule 8
30 year clash flow incorporating time value of
money. Modeling work determines biomass
selling price to achieve a NPV of zero at 30 > , . 10 14 18 5 > 10
years. Year of Operation

W Capital Cost M Operational Cost M Loan Payment M Taxes M Annual Revenue
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Results: Baseline TEA

$13

: »11.11 M Tax
« HTL has lowest production $11
COStS B Other OPX
. . $9
* Higher production costs due 5~ $4.44 54-& o Fixed OPX
to lower fuel production & >7
(Y] . [0 Energy
— Biomass diversion to co- LAY
products + O Nutrients
S $3
+ Large co-product credits lead g M Dwnstrm CAPX
to overall lower fuel costs e [ Upstrm CAPX
-$1
« FOAK suffers from: > @ Co-Prdct Credit
— Downscaling HTL -$3 $2.67
. . } 7% $3.46 m Net
— Higher fixed costs -$5
— Lower productivity —— 23% Baseline Protein Fraction- FOAK

HTL Extraction ation
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Co-product Prices

Bulk Protein
— Low: $0.5 kgt
— Baseline: $1 kg1
— High: $1.5 kg

High-value chemical product
— Low: $2 kg
— Baseline: $3 kg
— High: $4 kgt

Struvite (NH,MgPO,-6H,0)

— From protein fermentation

— N+P fertilizer

Biochar
— Soil amendment

7)) COLDRADO STATE UNIVERSITY

Source S ton!(wet) |% Crude Protein| $ kg Protein
Distiller’s Corn (wet) S96 29% $1.01
Corn Gluten $236 25% $1.15
Soybean Meal $490 49% $1.23
Distiller’s Grains (dry) $298 28% $1.30
Whey Protein Powder S8 — $20+

Shewmaker G, Hall J, Baker S. Getting the most feed nutrient for the dollar. University of Idaho

Extension; 2013.

Product S kg1
Diesel @ $3 gge! S1
Succinic Acid ¢1-43
(polymer precursor, food acidity regulator)
Hydroquinone 8446
(reducing agent, polymer applications)
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Results: Co-Product Price Sensitivity

$13

* Low overall fuel cost depends ¢,y | DOProduction mBaseline Credit m Baseline Net
on large co-product credits
. $9
* Results very sensitive to oy
assumed co-product price g 57
_ _ Q0 $5.77
 Lower price © much higher % %5 $4.44
= .
fuel costs 8 ¢3 $3.10
O
— Inverse also true <
. : $1
« Accurate modeling H ‘1 !
assumptions critical to real- ' T °1.34
world economic viability -$3 Biochar '
— Market size & dynamics 5 <$0.10 '
— Small market # scale-up Baseline HTL Protein Fractionation FOAK

Extraction
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Demonstration of Improvements

$5
« Combination of moderate —53/gge
improvements to reach $3 gge? ¢4 —%5/gge
—S7/gge
«  Productivity increase $3 Total OPX| "
— 25to0 30 g m2day? " I Protein
o0 4B-Fractionation
° (o] 0]
Remove CHG o 2
« Recycle process CO, ~
o ~!
« Sell biochar ($100 ton?) &
struvite ($500 ton) $0
« Carbon capture credit €1 | é:o2 Recycle
— _ Biochar & Struvite
— 3% scenario: $52 — $85 ton~ Carbon capture credit
_52

$- $5 $10 $15 $20 $25 $30 835
CAPX: S ggelyr!
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resentation Objectives

Energy Production
—— Impact of co-product
pricing on economics

Impact of temporal
resolution on LCA

2000 —$3/age
1500 + s :::ﬁgge
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o B 3 5, | g
© 0 g 51 l o, 't
-500 & f
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-1000 - s277
onN S N N S W0 O N S WU R CO; Recycle
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Impact of TEA methodology

MARINER Economics Modeling Discounted Cash Flow Rate of Return
s160
160 .
Biomass cost: §114.37 ton"!
s1a0
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H i 51937 atand
3 s100 Total Cap-ex "
g 1 4 s100 | T
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